VECTOR SPACE BASES FOR THE HOMOGENEOUS PARTS IN HOMOGENEOUS IDEALS AND GRADED MODULES OVER A POLYNOMIAL RING

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner Bases for Non - Homogeneous Ideals in R 0 Jan

We extend the Gröbner basis theory developed in [10, 11] to certain non-homogeneous, locally filtered finitely generated ideals in R0 , and to certain admissible orders. The main tool used is the study of two homogeneous ideals that may be associated to an ideal I R0 , namely the ideal grT (I) generated by all homogenous components of maximal degree of elements in I , and the “homogenized” idea...

متن کامل

Some Results on dh-Closed Homogeneous Gröbner Bases and dh-Closed Graded Ideals

Let K be a field and R = ⊕p∈NRp an N-graded K-algebra, which has an SM K-basis (i.e. a skew multiplicative K-basis) such that R holds a Gröbner basis theory. It is proved that there is a one-to-one correspondence between the set of Gröbner bases in R and the set of dh-closed homogeneous Gröbner bases in the polynomial algebra R[t]; and that the similar result holds true if R and R[t] are replac...

متن کامل

Homogeneous strict polynomial functors as unstable modules

A relation between Schur algebras and the Steenrod algebra is shown in [Hai10] where to each strict polynomial functor the author naturally associates an unstable module. We show that the restriction of Hai’s functor to a sub-category of strict polynomial functors of a given degree is fully faithful.

متن کامل

Bases for Non-homogeneous Polynomial Ck Splines on the Sphere

We investigate the use of non-homogeneous spherical poly-nomials for the approximation of functions deened on the sphere S 2. A spherical polynomial is the restriction to S 2 of a polynomial in the three coordinates x; y; z of R 3. Let P d be the space of spherical polynomials with degree d. We show that P d is the direct sum of H d and H d?1 , where H d denotes the space of homogeneous degree-...

متن کامل

On Bezout Inequalities for non-homogeneous Polynomial Ideals

We introduce a “workable” notion of degree for non-homogeneous polynomial ideals and formulate and prove ideal theoretic Bézout Inequalities for the sum of two ideals in terms of this notion of degree and the degree of generators. We compute probabilistically the degree of an equidimensional ideal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Pure and Apllied Mathematics

سال: 2014

ISSN: 1311-8080,1314-3395

DOI: 10.12732/ijpam.v93i6.9